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Abstract. Consistent implementation of the additivity of physical observables in second
quantization uniquely establishes quantum statistics. In this scheme the usual Weyl-Heisenberg
algebra induces Maxwell-Boltzmann distribution, while Bose—Einstein statistics are related to
su(l, 1).

Isomorphism of physical observables with operators of the universal enveloping algebra and
representation theory are the best known applications of Lie algebras. In first quantization
the whole Lie—Hopf structure [1] has been used, even though often without explicitly
realizing it. Indeed it is the Lie—Hopf structure which prescribes that observables such
as energy, momentum and angular momentum must be additive. Without this property we
should loose the essential notion of an isolated system.

In this paper we aim to prove that the full Hopf algebra, and not the commutation
relations only, must be taken into account for second quantization as well, both for physical
reasons (for instance the additivity implied by the co-algebra is necessary to equally occupy
the states in a microcanonical ensemble) and because Hopf algebras qualify as the natural
mathematical tool to describe observables on a direct-product space.

Our main result is that in analogy with, for example, additivity of angular momenta,
which fixes by means of the Clebsch—Gordan coupling scheme the rules to compose two
spins, additivity of creation and annihilation operators determines quantum statistics, and
the latter is not always identical with that customarily adopted. We shall show that the
algebra naturally pertaining to Bose statistics in this perspective (%, 1), whereas the
Heisenberg algebra(1) is appropriate to the Maxwell-Boltzmann statistics.

Creation and annihilation operatoa% and a, in second quantization are nothing but
ladder operators, whose function is to generate the whole accessible Fock space of states
F = spar|ni, np,...)}. These operators are assumed independent for difféientthe
traditional procedure to describe bosons consists in adopting for them the Weyl-Heisenberg
algebrai(1). Their only duty, however, is to connect theparticle Fock space sector
Fo 10 Fusr (F = B,2,F.), Which have no memory of the algebra, nor have they
any intrinsic statistics which has instead to be imposed ‘by hand’ as external constraints.
In order to check this, we refer to the pedagogical discussion given by Roman in [2],
based on a two-particle system, each particle living in one of only two possible states. In
addition to fermions, which obey the Pauli exclusion principle, Roman points out two cases
with unlimited occupation numbers: boson statistics of course, but also Maxwell-Boltzman
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statistics. In this latter classical distribution, although one still deals with quantum particles,
the fundamental equiprobable event is equivalent to putting a ‘marble’ into one of two
‘boxes’: this implies that the distribution with the two particles in different states has
weight% while the two distributions with both particles in the same state each have weight

le. In Bose—Einstein statistics, in contrast, the fundamental equiprobable objects are the

vectors ofF|2, 0, |1, 1) and|0, 2), all of which have the same Weiggt Such weights are
the constraints, independent from the algebra, with which the Fock space is to be equipped.

In our approach the statistical constraints derive from the same Lie—Hopf algebra of
raising and lowering operators4. We shall show that each representationZnof A
satisfying the physical request of the existence of a vacuum defines a quantum statistics,
and that to the standard quantum statistics corresponds the fundamental representation of a
Lie—Hopf algebra. We have in fact singled out four algebras, thus finding further quantum
statistics. In order of increasing ‘attractivity’ [3]:

(i) Fermi-Dirac statistics, related to the superalgebr(a|l), completely repulsive
(because a fermion forbids that a new one occupies the same quantum state), which we
shall not discuss;

(i) Maxwell-Boltzman statistics, related to the Heisenberg algefia, completely
neutral (a new particle ‘chooses’ its state independently from the others);

(iif) Bose—Einstein statistics, moderately attractive (where all vectors in the Fock space
have the same weight) that we shall show to be related to the fundamental representation
of su(1, 1); other representations give rise to different interpolating statistics;

(iv) new strongly attractive statistics, related to the superalgebpal|2), where the
second patrticle is forced to occupy the same state as the first.

The core of our argument is that to each Lie algelrs associated a Lie—Hopf algebra
[1]; namely A is equipped, besides the usual commutation relations, with three additional
maps: coproduct co-unit, antipode Among these, the coprodust : A — A® A identifies
the co-algebra related to the direct-product representation.

The physical meaning ok is understood if one thinks of the process of addition of two
angular momentaJg, = JY + J5, a = 1, 2, 3. The requirement that the components/gf
still define an angular momentum operator implies the well known Clebsch—Gordan coupling
scheme. It also implies thak%,, written more formally asA(J*) = J* @ 1+ 1® J¢, is
nothing but the co-algebra of the Lie—Hopf algeb##?). More generally, in the operations,
guite common in physics, of disassembling a complex system into its separate components
as well as of collecting together non-interacting subsystems into a single object, energy,
momentum and other observables are implicitly considered as additive. We argue that,
analogously, in second quantization creation and annihilation operators must be additive
if one wants to impose, for example, that two degenerate levels are occupied with equal
probability as happens e.g. in the microcanonical ensemble. This means not only that
the global algebra must be isomorphic with that of the individual components, which is a
fundamental property of all Hopf algebras, but that one must have an additive algebra, i.e.
a Lie—Hopf algebra (an example of an algebra with non-additive co-algebra is given at the
end of the paper). This is rather more than what is contained solely in the commutation
relations and requires the information contained in the coproduct. One has thus constraints
for constructing pure states, as opposed to mixed states.

For simplicity, we confine our attention to the two-mode case, studying states of the form
lk,n—k), k=0,1,...,n; generalization to the case af modes; > 2, is straightforward.

The main point of our argument consists of the way of constructing the set of such two-
mode stateg|¢,)}, automatically incorporating the statistical constraints. We do this by
properly composing first creation (raising) operators by the coproduct
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A(aT)zaT®1+l®aTEaI+a£

and successively acting on the two-mode vacyan®) (A(N)|0,0) = 0 = A(a)|0, 0)) to
obtain
{Ign) o (A(a)"10,0)}.

In such a framework we shall consider the algebréb, osp(1|2) andsu(l,1). For
simplicity we shall adopt for all of them the same notation for the generators.

h(1) has generatora, a' and N, as well as the identity, which is central, with
commutation relations

[a,a'] =1 [N,a] = —a [N,a']l =a.
We assume thdt~ 1 in the representation. The requirement W@ = O (i.e. the physical
vacuum|0) is the highest weight vector) implig¥ ~ a'a, which is customarily adopted in
the description of bosons.

osp(1|2) is aZ,-graded algebra. Its universal enveloping algebra is generatad &y
and H, with the relations

{a,a'} =2H [H,a] = —a [H,a'] =dl.

With the positionH = N + % , dictated by the interpretation &f as number of ‘quanta’,
the Fock space representation tep(1]2) is the same:

aln) = +/nin —1) allny =vn+1ln+1) Nln) = nin).
More details onosp(1]2) can be found in [4,5]; we stress here only that, sintds an
odd operator, we hav{azf, a;} =0, fori # j (in contrast to the other cases, in which they
commute), which imply thabsp(1|2) may be related, in some way, also to fermions, in
analogy with its contraction(1]1).

su(1, 1) has generators, a' and H:

[a,a'] = 2H [H,a] = —a [H,a']l =al.
Again H = N + % and we select the fundamental representalixq“/n2 [6], written, in the
same Fock space,

aln) =njn — 1) allny = (n +Din + 1) N|n) = nin).

The algebraic structures considered above straightforwardly lead to the normalized two-
mode states:

o) = 2‘"/22 / |k n— for A~ h(1)

|pn) = for A ~su(l,1)

\/; Z lk,n —
while, for A ~ osp(1]2),

92) = o, Z\/ 2(” k)>|2k 2(n — )

2(n — k)
$ons1) = ﬁz ( )( n_k>
(Vn—k+1/212k,2(n — k) + 1) + Vk + 1/2|2k + 1, 2(n — k))}.
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Because of orthonormality of states, phases are irrelevant so far as no interaction is switched
on.

From |¢,) = Zc,((")|k,n — k), one obtains in a straightforward way the normalized
distribution function at fixed particle number P, (k) = |c{”|2. In the case ofi(1) we find
the binomial distribution with probability = %:

1 /n
Pn<k>=2n<k). @)

Thus, A(1) is naturally associated with the classical statistics of identical objects to be
distributed with equah priori probability in two identical slots (recovering, far= 2, the
example of Roman for the Maxwell-Boltzmann case). kofl, 1) we have a probability
distribution

1

Pu(k) = ]

Vk 2

uniform for all accessible states. This corresponds to the case of bosons (once more compare
for n = 2 the example of Roman). Finallysp(1|2) gives rise to

1r—s+3/25\ /20 — 1 /25\ [2(r —
e 3N -2 ()0

1 _
Poa(2s +1) = 1S+2<2s)(2(r ”) Pa(25+1) = 0

22 r+1\ s r—s

which distinguish between the various possible combinations of parities (and suggest
nuclear physics as a possible realm of application). These distributions have a more
transparent meaning in the limit when the number of particles is infinite; co. Upon
introducing the variabler = s/r (0 < x < 1) and defining lim_, o P2 (25) = pee(x),

M, o0 P2r11(28) = poe(x), M, o P2 11(2s + 1) = poo(x) (peo is Of course identically
zero), the above equations give the probability densities

2 1 2 [1—x 2 [1—x
Pee(X) = — ——e— Poe(x) = — Poo(X) = —
7T /x(1—x) b4 X b4 X

which exhibit at the extremes integrable divergences signalling maximum attractivity in the
sense of Huang [3].

The entire procedure described so far holds, of course, for any Hopf algebraic structure,
whether or not it is a Lie algebra, because the coproduct mapwell defined. Thus the
whole construction can be repeated for thalgebras associated with the three algebras
utilized above. We report here the result concermiggl), which is a clear example that
Lie algebra does not fix the full structure.

h,(1) [7] is the deformation of the universal enveloping algebra @f) controlled by
the arbitrary parameter:

g? — g2

g gz =t Wd=-a  [Nd=d ©)

[a,a'] =

and with a coproduct map which far is

A =d" ®¢' +q¢7' ®a’ ~qa] +q7%a). (4)
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Its algebra equation (3) is manifestly isomorphic kgl), but its Clebsch—Gordan
decomposition equation (4) is quite different:

_ 1 - n 2k—n
|¢”)_(42_|_q—2)n/2k2_;1’<k)q lk,n —k).
1

_ n 4k—2n
Falb) = (g% +q72)" <k>q

shows thath, (1) generalizes the binomial distribution o= (1+ ¢~*)~1. Assuming for
the two modes energieB; > E,, the parameteg can then be related to temperatufe
g — 0 implies that only state 2 is filled (see (4)), heri€e= 0, whereas foy = 1 both
energy levels are statistically equally occupied dhdhust be infinite.

The cases ofu,(1,1) and osp,(1]2) have some mathematical interest, and will be
discussed elsewhere [8].

Summarizing, we have exhibited the close link between co-algebra and quantum
statistics. The relevant ingredients of such a link are the following. Lie—Hopf algebras
impose the additivity of generators and therefore of the related physical observables.
Consistent use of such additivity in second quantization authomatically reduces the Fock
space dimension according to the statistical constraints.

Besidesi(1]1), which we did not discuss, we have singled out three algelasag1|2)
leads to novel strongly attractive statisticsi(1) turns out to generate the Maxwell—
Boltzmann probability distributionsu (1, 1) exhibits a much more articulated picture: the
requirement of the existence of a vacuum imposes that one takes into consideration the
discrete series bounded beld¥ [6]. The fundamental representation~= % originates
Bose—Einstein statistics, the contractibdn— oo recoversh(l) and hence Maxwell—
Boltzmann, whereas the intemedidfe give rise to statistics in between.

We conclude with a few additional remarks. In the frame of a grand-canonical
ensemble, the states have the (coherent) fgfmx €2@?|0,0...). For the representation
Dy, of su(1,1) this leads to 8@10,0...) = ¥, |n1.nz...) which indeed gives

the statistics introduced by Bose [9], wherdad) uniquely implies é@"(0,0...) =
> i, alna! . )7Y2ng ny . ) which leads just to the Boltzmann statistics with the
correct counting.

Our discussion is limited here to second quantization. The question of whether it can
be extended to the continuum, giving rise to a corresponding field theory, is still under
investigation. The commutations adopted should still imply for the field commutators
a factor§(x — y) also for su(1, 1)—even though possibly weighted by a kernel—thus
guaranteeing locality of the theory. Moreover, in the customary applications, quantum
field theory characteristically deals with singly occupied bosonic states, a case where the
representatiori)f/2 of su(1,1) and k(1) (projected onto the Fock subspace with < 2)
give exactly the same results.

The method proposed here suggests instead the possibility of new interesting
perspectives from the point of view of applications in statistical mechanics, where assigning
a given algebra fou, anda} implies—in our scheme—assigning the particle statistics. For
example, it appears plausible thatl) may indeed play its most relevant role in systems
where Maxwell-Boltzmann statistics may emerge naturally from a dynamics intrinsically
guantum. Similarly we expect that mesoscopic properties related to the existence of
a condensate are more properly connected withsti, 1) distribution. Finally, the
novel distribution generated bysp(1]2) has features which appear possibly related to
superconductivity [8].
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