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Abstract. Consistent implementation of the additivity of physical observables in second
quantization uniquely establishes quantum statistics. In this scheme the usual Weyl–Heisenberg
algebra induces Maxwell–Boltzmann distribution, while Bose–Einstein statistics are related to
su(1, 1).

Isomorphism of physical observables with operators of the universal enveloping algebra and
representation theory are the best known applications of Lie algebras. In first quantization
the whole Lie–Hopf structure [1] has been used, even though often without explicitly
realizing it. Indeed it is the Lie–Hopf structure which prescribes that observables such
as energy, momentum and angular momentum must be additive. Without this property we
should loose the essential notion of an isolated system.

In this paper we aim to prove that the full Hopf algebra, and not the commutation
relations only, must be taken into account for second quantization as well, both for physical
reasons (for instance the additivity implied by the co-algebra is necessary to equally occupy
the states in a microcanonical ensemble) and because Hopf algebras qualify as the natural
mathematical tool to describe observables on a direct-product space.

Our main result is that in analogy with, for example, additivity of angular momenta,
which fixes by means of the Clebsch–Gordan coupling scheme the rules to compose two
spins, additivity of creation and annihilation operators determines quantum statistics, and
the latter is not always identical with that customarily adopted. We shall show that the
algebra naturally pertaining to Bose statistics in this perspective issu(1, 1), whereas the
Heisenberg algebrah(1) is appropriate to the Maxwell–Boltzmann statistics.

Creation and annihilation operatorsa†` and a` in second quantization are nothing but
ladder operators, whose function is to generate the whole accessible Fock space of states
F = span{|n1, n2, . . .〉}. These operators are assumed independent for different`’s: the
traditional procedure to describe bosons consists in adopting for them the Weyl–Heisenberg
algebrah(1). Their only duty, however, is to connect then-particle Fock space sector
Fn to Fn±1 (F =

⊕∞
n=0Fn), which have no memory of the algebra, nor have they

any intrinsic statistics which has instead to be imposed ‘by hand’ as external constraints.
In order to check this, we refer to the pedagogical discussion given by Roman in [2],
based on a two-particle system, each particle living in one of only two possible states. In
addition to fermions, which obey the Pauli exclusion principle, Roman points out two cases
with unlimited occupation numbers: boson statistics of course, but also Maxwell–Boltzman
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statistics. In this latter classical distribution, although one still deals with quantum particles,
the fundamental equiprobable event is equivalent to putting a ‘marble’ into one of two
‘boxes’: this implies that the distribution with the two particles in different states has
weight 1

2 while the two distributions with both particles in the same state each have weight
1
4. In Bose–Einstein statistics, in contrast, the fundamental equiprobable objects are the
vectors ofF |2, 0〉, |1, 1〉 and|0, 2〉, all of which have the same weight1

3. Such weights are
the constraints, independent from the algebra, with which the Fock space is to be equipped.

In our approach the statistical constraints derive from the same Lie–Hopf algebra of
raising and lowering operators,A. We shall show that each representation inF of A
satisfying the physical request of the existence of a vacuum defines a quantum statistics,
and that to the standard quantum statistics corresponds the fundamental representation of a
Lie–Hopf algebra. We have in fact singled out four algebras, thus finding further quantum
statistics. In order of increasing ‘attractivity’ [3]:

(i) Fermi–Dirac statistics, related to the superalgebrah(1|1), completely repulsive
(because a fermion forbids that a new one occupies the same quantum state), which we
shall not discuss;

(ii) Maxwell–Boltzman statistics, related to the Heisenberg algebrah(1), completely
neutral (a new particle ‘chooses’ its state independently from the others);

(iii) Bose–Einstein statistics, moderately attractive (where all vectors in the Fock space
have the same weight) that we shall show to be related to the fundamental representation
of su(1, 1); other representations give rise to different interpolating statistics;

(iv) new strongly attractive statistics, related to the superalgebraosp(1|2), where the
second particle is forced to occupy the same state as the first.

The core of our argument is that to each Lie algebraA is associated a Lie–Hopf algebra
[1]; namelyA is equipped, besides the usual commutation relations, with three additional
maps:coproduct, co-unit, antipode. Among these, the coproduct1 : A→ A⊗A identifies
the co-algebra related to the direct-product representation.

The physical meaning of1 is understood if one thinks of the process of addition of two
angular momenta:J αtot ≡ J α1 +J α2 , α = 1, 2, 3. The requirement that the components ofJ αtot
still define an angular momentum operator implies the well known Clebsch–Gordan coupling
scheme. It also implies thatJ αtot, written more formally as1(Jα) = J α ⊗ 1+ 1⊗ J α, is
nothing but the co-algebra of the Lie–Hopf algebrasu(2). More generally, in the operations,
quite common in physics, of disassembling a complex system into its separate components
as well as of collecting together non-interacting subsystems into a single object, energy,
momentum and other observables are implicitly considered as additive. We argue that,
analogously, in second quantization creation and annihilation operators must be additive
if one wants to impose, for example, that two degenerate levels are occupied with equal
probability as happens e.g. in the microcanonical ensemble. This means not only that
the global algebra must be isomorphic with that of the individual components, which is a
fundamental property of all Hopf algebras, but that one must have an additive algebra, i.e.
a Lie–Hopf algebra (an example of an algebra with non-additive co-algebra is given at the
end of the paper). This is rather more than what is contained solely in the commutation
relations and requires the information contained in the coproduct. One has thus constraints
for constructing pure states, as opposed to mixed states.

For simplicity, we confine our attention to the two-mode case, studying states of the form
|k, n−k〉, k = 0, 1, . . . , n; generalization to the case ofm modes,m > 2, is straightforward.
The main point of our argument consists of the way of constructing the set of such two-
mode states{|φn〉}, automatically incorporating the statistical constraints. We do this by
properly composing first creation (raising) operators by the coproduct
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1(a†) = a† ⊗ 1+ 1⊗ a† ≡ a†1 + a†2
and successively acting on the two-mode vacuum|0, 0〉 (1(N)|0, 0〉 = 0 = 1(a)|0, 0〉) to
obtain

{|φn〉 ∝ (1(a†))n|0, 0〉}.
In such a framework we shall consider the algebrash(1), osp(1|2) and su(1, 1). For

simplicity we shall adopt for all of them the same notation for the generators.
h(1) has generatorsa, a† and N , as well as the identityI , which is central, with

commutation relations

[a, a†] = I [N, a] = −a [N, a†] = a†.
We assume thatI ' 1 in the representation. The requirement thata|0〉 = 0 (i.e. the physical
vacuum|0〉 is the highest weight vector) impliesN ' a†a, which is customarily adopted in
the description of bosons.

osp(1|2) is aZ2-graded algebra. Its universal enveloping algebra is generated bya, a†

andH , with the relations

{a, a†} = 2H [H, a] = −a [H, a†] = a†.
With the positionH ≡ N + 1

2 , dictated by the interpretation ofN as number of ‘quanta’,
the Fock space representation forosp(1|2) is the same:

a|n〉 = √n |n− 1〉 a†|n〉 = √n+ 1 |n+ 1〉 N |n〉 = n|n〉.
More details onosp(1|2) can be found in [4, 5]; we stress here only that, sincea† is an
odd operator, we have{a†i , a†j } = 0, for i 6= j (in contrast to the other cases, in which they
commute), which imply thatosp(1|2) may be related, in some way, also to fermions, in
analogy with its contractionh(1|1).

su(1, 1) has generatorsa, a† andH :

[a, a†] = 2H [H, a] = −a [H, a†] = a†.
Again H ≡ N + 1

2 and we select the fundamental representationD+1/2 [6], written, in the
same Fock space,

a|n〉 = n|n− 1〉 a†|n〉 = (n+ 1)|n+ 1〉 N |n〉 = n|n〉.
The algebraic structures considered above straightforwardly lead to the normalized two-
mode states:

|φn〉 = 2−n/2
n∑
k=0

√(
n

k

)
|k, n− k〉 for A ∼ h(1)

|φn〉 = 1√
n+ 1

n∑
k=0

|k, n− k〉 for A ∼ su(1, 1)

while, for A ∼ osp(1|2),

|φ2n〉 = 1

2n

n∑
k=0

√(
2k
k

)(
2(n− k)
n− k

)
|2k, 2(n− k)〉

|φ2n+1〉 = 1

2n
√
n+ 1

n∑
k=0

√(
2k
k

)(
2(n− k)
n− k

)
{
√
n− k + 1/2 |2k, 2(n− k)+ 1〉 +

√
k + 1/2|2k + 1, 2(n− k)〉}.
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Because of orthonormality of states, phases are irrelevant so far as no interaction is switched
on.

From |φn〉 =
∑
c
(n)
k |k, n − k〉, one obtains in a straightforward way the normalized

distribution function at fixed particle numbern, Pn(k) = |c(n)k |2. In the case ofh(1) we find
the binomial distribution with probabilityp = 1

2:

Pn(k) = 1

2n

(
n

k

)
. (1)

Thus, h(1) is naturally associated with the classical statistics of identical objects to be
distributed with equala priori probability in two identical slots (recovering, forn = 2, the
example of Roman for the Maxwell–Boltzmann case). Forsu(1, 1) we have a probability
distribution

Pn(k) = 1

n+ 1
∀k (2)

uniform for all accessible states. This corresponds to the case of bosons (once more compare
for n = 2 the example of Roman). Finally,osp(1|2) gives rise to

P2r+1(2s) = 1

22r

r − s + 1
2

r + 1

(
2s

s

)(
2(r − s)
r − s

)
P2r (2s) = 1

22r

(
2s

s

)(
2(r − s)
r − s

)
P2r+1(2s + 1) = 1

22r

s + 1
2

r + 1

(
2s

s

)(
2(r − s)
r − s

)
P2r (2s + 1) = 0

which distinguish between the various possible combinations of parities (and suggest
nuclear physics as a possible realm of application). These distributions have a more
transparent meaning in the limit when the number of particles is infinite,r → ∞. Upon
introducing the variablex ≡ s/r (0 6 x 6 1) and defining limr→∞ P2r (2s) = pee(x),
limr→∞ P2r+1(2s) = poe(x), limr→∞ P2r+1(2s + 1) = poo(x) (peo is of course identically
zero), the above equations give the probability densities

pee(x) = 2

π

1√
x(1− x) poe(x) = 2

π

√
1− x
x

poo(x) = 2

π

√
1− x
x

which exhibit at the extremes integrable divergences signalling maximum attractivity in the
sense of Huang [3].

The entire procedure described so far holds, of course, for any Hopf algebraic structure,
whether or not it is a Lie algebra, because the coproduct map1 is well defined. Thus the
whole construction can be repeated for theq-algebras associated with the three algebras
utilized above. We report here the result concerninghq(1), which is a clear example that
Lie algebra does not fix the full structure.

hq(1) [7] is the deformation of the universal enveloping algebra ofh(1) controlled by
the arbitrary parameterq:

[a, a†] = q2I − q−2I

q2− q−2
' 1 [N, a] = −a [N, a†] = a† (3)

and with a coproduct map which fora† is

1(a†) = a† ⊗ q I + q−I ⊗ a† ' qa†1 + q−1a
†
2. (4)
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Its algebra equation (3) is manifestly isomorphic toh(1), but its Clebsch–Gordan
decomposition equation (4) is quite different:

|φn〉 = 1

(q2+ q−2)n/2

n∑
k=0

√(
n

k

)
q2k−n|k, n− k〉.

Pn(k) = 1

(q2+ q−2)n

(
n

k

)
q4k−2n

shows thathq(1) generalizes the binomial distribution top = (1+ q−4)−1. Assuming for
the two modes energiesE1 > E2, the parameterq can then be related to temperatureT :
q → 0 implies that only state 2 is filled (see (4)), henceT = 0, whereas forq = 1 both
energy levels are statistically equally occupied andT must be infinite.

The cases ofsuq(1, 1) and ospq(1|2) have some mathematical interest, and will be
discussed elsewhere [8].

Summarizing, we have exhibited the close link between co-algebra and quantum
statistics. The relevant ingredients of such a link are the following. Lie–Hopf algebras
impose the additivity of generators and therefore of the related physical observables.
Consistent use of such additivity in second quantization authomatically reduces the Fock
space dimension according to the statistical constraints.

Besidesh(1|1), which we did not discuss, we have singled out three algebras.osp(1|2)
leads to novel strongly attractive statistics.h(1) turns out to generate the Maxwell–
Boltzmann probability distribution.su(1, 1) exhibits a much more articulated picture: the
requirement of the existence of a vacuum imposes that one takes into consideration the
discrete series bounded belowD+k [6]. The fundamental representation,k = 1

2, originates
Bose–Einstein statistics, the contractionk → ∞ recoversh(1) and hence Maxwell–
Boltzmann, whereas the intemediatek’s give rise to statistics in between.

We conclude with a few additional remarks. In the frame of a grand-canonical
ensemble, the states have the (coherent) form|φ〉 ∝ e1(a

†)|0, 0 . . .〉. For the representation
D+1/2 of su(1, 1) this leads to e1(a

†)|0, 0 . . .〉 = ∑
n1,n2,...

|n1, n2 . . .〉 which indeed gives

the statistics introduced by Bose [9], whereash(1) uniquely implies e1(a
†)|0, 0 . . .〉 =∑

n1,n2,...
(n1!n2! . . .)−1/2|n1, n2 . . .〉 which leads just to the Boltzmann statistics with the

correct counting.
Our discussion is limited here to second quantization. The question of whether it can

be extended to the continuum, giving rise to a corresponding field theory, is still under
investigation. The commutations adopted should still imply for the field commutators
a factor δ(x − y) also for su(1, 1)—even though possibly weighted by a kernel—thus
guaranteeing locality of the theory. Moreover, in the customary applications, quantum
field theory characteristically deals with singly occupied bosonic states, a case where the
representationD+1/2 of su(1, 1) andh(1) (projected onto the Fock subspace withnj < 2)
give exactly the same results.

The method proposed here suggests instead the possibility of new interesting
perspectives from the point of view of applications in statistical mechanics, where assigning
a given algebra fora` anda†` implies—in our scheme—assigning the particle statistics. For
example, it appears plausible thath(1) may indeed play its most relevant role in systems
where Maxwell–Boltzmann statistics may emerge naturally from a dynamics intrinsically
quantum. Similarly we expect that mesoscopic properties related to the existence of
a condensate are more properly connected with thesu(1, 1) distribution. Finally, the
novel distribution generated byosp(1|2) has features which appear possibly related to
superconductivity [8].
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